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Abstract Next generation power management at all scales will rely on the efficient
scheduling and operation of both generating units and loads to maximize efficiency
and utility. The ability to schedule and modulate the demand levels of a subset of
loads within a power system can lead to more efficient use of the generating units.
These methods become increasingly important for systems that operate indepen-
dently of the main utility, such as microgrid and off-grid systems. This work ex-
tends the principles of unit commitment and economic dispatch problems to off-grid
power systems where the loads are also schedulable. We propose a general optimiza-
tion framework for solving the energy management problem in these systems. An
important contribution is the description of how a wide range of sources and loads,
including those with discrete states, non-convex, and nonlinear cost or utility func-
tions, can be reformulated as a convex optimization problem using, for example, a
shortest path description. Once cast in this way, solution are obtainable using a sub-
gradient algorithm that also lends itself to a distributed implementation. The methods
are demonstrated by a simulation of an off-grid solar powered community.
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Nomenclature
G,L number of generating units, number of loads
G, L set of generating units, set of loads
T time horizon
T set of time indices
i, j, t index for generating units, loads, and time
gi(t), yj (t) power level of generating unit i ∈ G and demand of load

j ∈ L at time t ∈ T
x

g
i (t), u

g
i (t) state and control variables for generating unit i ∈ G at time

t ∈ T
xl
j (t), u

l
j (t) state and control variables for load j ∈ L at time t ∈ T

f
g
i (gi(t), x

g
i (t), u

g
i (t)) dynamic evolution of generating unit variables for unit i ∈ G

f l
j (yj (t), x

l
j (t), u

l
j (t)) dynamic evolution of load variables for load j ∈ L

Ci(gi(t), x
g
i (t), u

g
i (t)) operating cost of generator unit i ∈ G at time t ∈ T

Uj (yj (t), x
l
j (t), u

l
j (t)) utility of load j ∈ L at time t ∈ T

S g
i (t), S l

j (t) abstract constraint set for generator unit i ∈ G and load
j ∈ L at time t ∈ T

X g
i (t), U g

i (t) abstract constraint set for generator load state and control
variables at t ∈ T

X l
j (t), U l

j (t) abstract constraint set for load state and control variables at
t ∈ T

L(·), q(λ) Lagrangian and dual functions
λt , v(λt ), α Lagrange multiplier and sub-gradient at time t ∈ T , step size

1 Introduction

The push to modernize power systems towards a “smart” grid is driven by a variety
of factors including environmental compliance, economic advantage, and improved
reliability, robustness, and service. Indeed, the development of technologies and ap-
plications related to smart grids is now a centerpiece for a clean-energy economy
and initiative in both the United States and European Union [1, 2]. Precisely how a
smart grid should look like and operate is now an active area of research in the power
systems community [3–6].

The ultimate success of a smart-grid infrastructure will depend on a decreasing
dependence of consumers on the main power distribution network. A first step in
this direction is through the so-called microgrid. A microgrid contains various dis-
tributed energy resources (i.e., wind turbines, photovoltaic arrays, fuel cells, gen-
erators), energy storage devices (i.e., super-capacitors, batteries), and controllable
loads [7]. A key feature of microgrids is their ability to operate autonomously, i.e.
isolated from the main power grid. The success of a microgrid-type architecture de-
pends not only on the development of new energy resources and storage capabilities,
but equally on the ability to control and schedule these systems in a distributed man-
ner [8]. Another challenge associated with microgrid is managing the import and
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Fig. 1 Off-grid systems operate independently of a microgrid and smart grid architecture

export of power to the main distribution network. This relates to both the power bal-
ance of the entire network and the economic bartering between the utility and the
microgrid [9, 10].

While much of the vision for smart and microgrids are aimed at large scale imple-
mentation, many of the fundamental principles and techniques can also be adapted for
smaller-sized self-contained power systems. Such systems are referred to as off-grid
systems [11–13]. Off-grid systems inherit many similarities to microgrids, primar-
ily regarding the ability to operate independently of the main grid; this is visualized
in Fig. 1. Off-grid systems can include small self-contained power systems such as
hybrid and electrical vehicles (HEV) [14–16] and the “more electric aircraft” (MEA)
pursued by the United States Air Force [17–19]. A larger scale version, including the
scenario examined in this work, is that of smart homes and communities residing off
the main grid [10, 20, 21].

The main component of an off-grid system, therefore, is an effective energy man-
agement system (see Fig. 1). The energy management system must coordinate the
scheduling and operation of all the distributed generation sources in the system while
also managing the efficient use of the loads. This should be done in a way that the
overall operating cost for generation is minimized and the utility obtained by the
user through the loads is maximized. Traditionally, the scheduling and operation of
large scale power systems involves the solution of the unit commitment (UC) and
economic dispatch (ED) problems. These problems determine an optimal schedule
and commitment level for each generating unit in a power system based on a set
of constraints, including reserve power, operating parameters, and forecasted loads
over a finite time horizon. Many solution methods have been proposed including
Lagrangian relaxation techniques and dynamic programming [22–26]. The mixed-
integer linear programming (MILP) method applicable to small and medium sized
power systems with linear models is another approach to search for the optimal con-
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tinuous and integer variables [27–29]. One of the difficulties related to this class of
problems, however, is that the demand level is often not known precisely.

While this issue is perhaps unavoidable when considering large scale power sys-
tems, the notion of unknown load demand levels for smaller scale power systems
may not be as prevalent. In applications such as HEV and MEA, certain classes of
loads may follow very precise profiles for their demand level. Such loads, for exam-
ple, avionics in an aircraft or a refrigerator in an off-grid home, may be critical to
the successful operation of the power system, while others, such as the environmen-
tal control system, may follow looser demand profiles and have flexibility in their
demand level. In this direction, we consider an extension of the economic dispatch
and unit commitment problem to include the scheduling and operation of a subset of
loads within the power system. The notion of an optimal load demand pattern can
be considered as the “dual” problem to the ED and UC formulation; if generation
of power is modeled as a fixed resource then indeed the scheduling of loads would
follow the same methodology. For ED and UC of power generation, the optimization
objective is the minimization of the overall fuel and operating costs. For loads, we
consider the maximization of the load utility. The utility of certain loads is expected
to be highly dependent on the application, and the exact form of these utility func-
tions may not have the same analytic foundation as for generation. A possible source
for these utility functions might be borrowed from microeconomic principles in the
form of a demand curve or benefit function [30]. Such utility-based approaches have
been considered for real-time pricing algorithms within a smart grid framework with
quadratic or linear utility functions [31, 32]. In [33], an energy management system
for smart homes aimed at maximizing the net benefit by end users is considered.
The general problem of utility maximization has been studied for problems related to
network architecture and resource allocation [34, 35].

The notion of scheduling loads in a power system is not an entirely new idea.
A common technique employed in self-contained power systems is load shedding.
In many situations, such as in aircraft power systems, load shedding is based on a
heuristic where loads are “ranked” according to a priority list [36, 37]; when there is
more demand than power available, loads at the bottom of the list are shed until the
power balance is restored. More sophisticated load shedding methods utilizing tech-
niques from optimization have also been employed [38], but the fundamental notion
of a priority is still utilized. Direct load control (DLC) is another attempt to control
the load demand although the general approach is motivated by the capabilities of
the generating units rather than the utility of the loads [39–41]. With the recognition
of the importance of smart grids, DLC has been revisited with a broader focus but
is still faced with challenges such as the understanding the relationship between the
consumer and the supplier [30, 42–44].

The main contribution of this work, therefore, is the development of an energy
management system for an off-grid power system. This work extends the principles
and techniques employed in traditional UC and ED problems to self-contained power
systems that also permit the scheduling of loads. Specifically, we formulate an opti-
mization problem that minimizes the operating and generating costs of a distributed
generation system while simultaneously maximizing the utility of the loads in the
power system. In the process of deriving the optimization model, we describe how
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qualitative descriptions of generating units and loads can be mathematically mod-
eled in a way that leads to tractable solution algorithms for solving the problem; this
greatly generalizes the current methods used related to load control in off-grid sys-
tems. The structure of the proposed model lends itself to a distributed implementation
using a sub-gradient algorithm. An important component of the algorithm described
here is the use of a shortest path solution to solve component level sub-problems
based on the qualitative description of each unit. The proposed distributed algorithm
allows for parallel computation while maintaining stable calculation performance
with increasing number of electric components in the system. Furthermore, the qual-
itative descriptions developed allows to consider a broader class of utility functions,
including discrete, nonlinear, and non-convex (such as a priority-type utility), as com-
pared to other solutions [31, 32]. Finally, the algorithm is easy to implement, leading
to a cheaper solution compared to that of commercial MILP software. A detailed dis-
cussion of the advantages of a Lagrangian relaxation technique compared to MILP is
given in [28, 29].

The outline of this paper is as follows. In Sect. 2 we first develop the power system
model employed in this work. This section includes a generic description of the gen-
erating units and loads including their cost and utility functions along with their as-
sociated constraints. The optimization model is also derived in Sect. 2 along with the
companion dual problem. The description of the dual problem provides insights into
alternative descriptions of the model, that in turn, leads to tractable solution methods.
In Sect. 2.1 we explore how a wide description of generating units and loads can be
formulated into equivalent tractable problems. The description of a decentralized so-
lution method for solving the model is presented in Sect. 3. A simulation example of
an off-grid solar powered community is provided in Sect. 4, and concluding remarks
are given in Sect. 5.

2 An optimization framework for an energy management system

The general objective for a distributed generation system with schedulable loads is to
determine a schedule and commitment level for each generating unit and load such
that the running costs of the generating units are minimized and the utility of the loads
are maximized.1 In addition to cost minimization and utility maximization, each unit
must also respect its own operating constraints and the aggregate power balance of
the system.

Generally, the generating units and loads can contain systems with both continu-
ous and discrete operating states. For example, a battery might be modeled to have a
constant charge and discharge rate. In this way, the variable gi(t), corresponding to
the battery power level, will be a discrete variable. In contrast, a generator can output
power continuously, corresponding to gi(t) being a continuous variable. The con-
tinuous or discrete nature of each element is encoded in the corresponding abstract
constraint sets for the units (described in the nomenclature section).

1At times we will also refer to the “disutility” of loads. In this way, we aim to minimize the disutility.
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In this direction, we can express the objective of the energy management system
that we would like to minimize as,

J (g,y,xg,xl ,ug,ul) =
T∑

t=1

(
G∑

i=1

Ci

(
gi(t), x

g
i (t), u

g
i (t)

)

−
L∑

j=1

Uj

(
yj (t), x

l
j (t), u

l
j (t)

)
)

. (2.1)

For notational simplicity we introduced the bold-faced vector notation; for example
g(t) = [g1(t) · · · gG(t) ]T .

Remark 1 The cost minimization or utility maximization component of the objective
function (2.1) can be assigned a “priority” by introducing a scalar weight for each
term. For example, assigning a weight of 0 to the utility maximization term corre-
sponds to the cost function for a traditional ED and UC problem.

When considering an optimization framework for solving the scheduling and com-
mitment problems, it is standard to assume certain properties for the objective func-
tion (2.1). For example, convexity and continuity of the cost function (and concavity
of the utility function) allow, through the tools of convex analysis, efficient solution
methods in addition to strong guarantees on rates of convergence and optimality [45].
However, in many qualitative descriptions of generating units and loads, such an ideal
mathematical description of their cost or utility might not be possible. Rather, the
functions may have discontinuities and convexity or linearity might not be guaran-
teed. Combined with the possibly discrete nature of the optimization variables, min-
imization of (2.1) becomes computationally difficult. We will show in this section
that for certain forms of the cost and utility functions, equivalent representation of
the objective can be derived that lead to tractable solution methods.

The optimization problem we aim to solve, which we call problem P , can now be
stated as

min
g,y,xg,xl ,ug,ul

J (g,y,xg,xl ,ug,ul ) (2.2)

s.t. (gi(t), x
g
i (t), u

g
i (t)) ∈ Qg

i (t), ∀i ∈ G, t ∈ T (2.3)

(yj (t), x
l
j (t), u

l
j (t)) ∈ Ql

j (t), ∀j ∈ L, t ∈ T (2.4)

x
g
i (t + 1) = f

g
i (gi(t), x

g
i (t), u

g
i (t)), ∀i ∈ G, j ∈ L (2.5)

xl
j (t + 1) = f l

j (yj (t), x
l
j (t), u

l
j (t)), ∀i ∈ G, j ∈ L (2.6)

L∑

j=1

yj (t) =
G∑

i=1

gi(t), ∀t ∈ T . (2.7)

We introduced a further notation for simplification, Qg
i (t) = S g

i (t) × X g
i (t) ×

U g
i (t) and Ql

i (t) = S l
i (t) × X l

i (t) × U l
i (t). The constraints (2.5) and (2.6) represent
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any dynamic descriptions of a unit, such as the decision to turn a unit on or off. The
constraint (2.7) is the aggregate power balance equation of the power system. Note
that this constraint is the only coupling constraint in the problem P ; in the absence
of such a constraint the problem could be decomposed in a straightforward way, and
much of the challenge in solving P stems from this constraint. It is also worth men-
tioning that the power balance equation (2.7) assumes that the power system resides
on a single power bus.

The dimension of this program is dependent on the time horizon, T = |T | and the
number of generating units G and loads L. In this regard, the size of this problem
is O(T (G + L)); the exact size will depend on the complexity of the dynamic and
abstract constraints for each generating unit and load. Finally, we would like to re-
emphasize that the model in (2.2), in its most general form, represents a non-linear,
non-convex, and mixed-integer program.

Remark 2 The framework presented above provides, in general, a complete schedule
and commitment level for all units in the power system. However, certain scenarios
might require that a unit follow a nominal or desired state trajectory. Our earlier
discussion also handles the situation where a nominal trajectory must be satisfied
(for example, by specifying the constraint sets S g and S l as an equality constraint at
each time t). We also would like to highlight that our problem formulation implicitly
handles a scenario where a nominal trajectory must be tracked, but the unit is allowed
to deviate from that trajectory in some specified way. In particular, we note that the
cost functions for each unit can be designed such that the error between a nominal
trajectory and the real trajectory is minimized (e.g., Ci(gi(t)) = (gi(t) − g(t))2 for
some reference trajectory g(t)). The constraint sets S g and S l would then capture the
allowable deviations from the nominal trajectory (e.g., gi(t) ∈ [g(t) − ε, g(t) + ε]).

Before considering solution methods for the problem P , we first describe a few
classes of units and their associated objective functions and constraint sets. We would
like to emphasize that the precise form of these functions is of paramount importance
for the development of a solution methodology.

2.1 Unit descriptions

A significant challenge in solving problem P is a precise description of the cost and
utility functions, and the constraints of each unit (both dynamic and static). In this
direction, we define here a few general classes of units.

2.1.1 Convex and continuous objective, 1 state (CC1)

This represents the simplest class of a generating unit or load. We assume the cost
(utility) function is a convex (concave) and continuous function. While the general
form of the cost function (e.g. piecewise continuous or smooth) will ultimately dic-
tate the appropriate solution method, this form allows for a traditional approach for
finding a solution method. For example, one might consider a piecewise-linear cost
curve representing a progressively increasing cost as the output power increases. An
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example of a utility function for loads could be an α-fair utility curve commonly used
in network utility maximization problems [34].

The other defining property for units of this type relates to the number of states
required to describe its operation. Units that are ‘always on’ do not have to be sched-
uled as there is no ability to change the state of the unit; for example, a refrigerator
in an off-grid home should be modeled as such a unit. Critical loads, such as avionics
in aircraft, can also be modeled in this way. Therefore, the dynamic constraints (2.5)
and (2.6) are not needed.2 The only constraints these units must consider are the ab-
stract constraint sets S g

i (t) and S l
j (t) corresponding to the lower and upper bounds on

the power output (demand) level of the unit. In the absence of a dynamic constraint,
the objective from the perspective of each unit is to minimize the cost of generation
(maximize the load utility) while respecting the aggregate power balance constraint
of the system.

2.1.2 Convex and continuous objective, n states (CCn)

A natural generalization of the class CC1 is to include multiple operating states de-
scribing the operation of the unit. As with CC1, we assume the cost and utility func-
tions are convex (concave) and continuous. The addition of multiple operating states
adds the scheduling component to problem P . This class of units perhaps describes
the most common types of units found in a self-contained power system. While the
exact nature of each unit will require a customized model, we will show here a few
examples to illustrate the general procedure. The following models represent exten-
sions and variations to the basic models used in [22, 26].

Example 1 (On/Off units) The simplest example is for n = 2, corresponding to a unit
that can be switched on or off. This type of unit has dynamics of the form3

xg(t + 1) = ug(t), (2.8)

with x(t) ∈ X = {0,1} and u(t) ∈ U = {0,1}, for all t ∈ T . Here we associate the
state value x(t) = 0 to ‘off’ and x(t) = 1 to ‘on.’ Using this dynamic description we
are also able to explicitly consider any costs associated with a state transition. For
example, the cost function Ci(g(t), xg(t), ug(t)) (and utility Ui(y(t), xl(t), ul(t)))
given in (2.1) can be decomposed to reflect transition costs in addition to generation
(utility) costs. In this way, we can write the cost function as

C
(
g(t), xg(t), ug(t)

) = P g(g(t), xg(t)) + Sg(xg(t), ug(t)); (2.9)

the function is composed of a cost associated with generating power at a level g(t)

(and the state to ensure that when the device is ‘off’ there is no cost for generation),

2They can be included for completeness by defining, for example, x
g
i
(t + 1) = f

g
i

(gi (t), x
g
i
(t),

u
g
i
(t)) = 0.

3A similar formulation can be used for the loads.
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and the cost of switching states in the next time interval.4 The associated cost for the
load will have the similar form;

U
(
y(t), xl(t), ul(t)

) = P l(y(t), xl(t)) − Sl(xl(t), ul(t)); (2.10)

state-transition costs for loads are considered in the same way as for generators which
requires those costs to be minimized, leading to the above form.

It is assumed for this class of units that the power variable g(t) (y(t)) is contin-
uous, and the objective function P g (P l) is also continuous and convex (concave).
That is, the constraint set S g(t) (S l(t)) should be described as a continuous interval.
The transition cost will typically have the following form,

Sg(xg(t), ug(t)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c1(t), if (xg(t), ug(t)) = (0,0)

c2(t), if (xg(t), ug(t)) = (0,1)

c3(t), if (xg(t), ug(t)) = (1,0)

c4(t), if (xg(t), ug(t)) = (1,1);
(2.11)

the constants ci(t) should be non-negative and can in general be time varying. Exam-
ples include standard electrical appliances such as lighting systems or a microwave
oven in an off-grid home.

Example 2 (Up/down time accumulation cost) Another example considers a unit with
n = 2 states with a cost (utility) that is a function of the power level, transition states,
and the cumulative time that the unit is ‘on’ or ‘off’. For example, when a dish washer
or oven is scheduled for use, the utility obtained by the user could potentially be
degraded if the load must be turned off during its operation. The dynamics can be
written as

xg(t + 1) =
{

xg(t) + ug(t), if xg(t)ug(t) > 0

ug(t), if xg(t)ug(t) < 0,
(2.12)

with xg(t) ∈ X = {−T , . . . ,−2,−1,1,2, . . . , T } and ug(t) ∈ U = {−1,1}, for all
t ∈ T . Here we take positive values of xg(t) to denote the number of time steps the
unit is ‘on’, and negative values for the number of time steps the unit is ‘off’. There-
fore, the ‘on’ state corresponds to x(t) > 0, and ‘off’ to x(t) < 0. This is illustrated
with a state transition diagram shown in Fig. 2 (the diagram also includes minimum
on and off time constraints, discussed below).

The cost function can be decomposed in a similar manner as in (2.9). As in the
previous example, this class of unit requires that the constraint variables S g(t) and
S l(t) are continuous intervals. The cost function for such a setting would most natu-
rally be described by a piece-wise continuous (and convex/concave) function. In this
way, the time that the unit is in the ‘on’ or ‘off’ state would constitute break-points
for the objective function.

4In this way, the transition cost reflects a change in state at time t to time (t + 1); the transition cost
could similarly be defined to reflect the change from time (t − 1) to t , representing a slightly different
interpretation for the total cost at time t .
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Fig. 2 State transition diagram
showing accumulation of time
spent in ‘on’ or ‘off’ states with
minimum on (τup = 3) and off
time (τdown = 2) constraints

Example 3 (Minimum up/down time) Certain generating units and loads may also
require a minimum up or down time constraint for their operation. This constraint in-
troduces a non-linearity into the dynamics given in (2.12) forcing ug(t) = 1 so long
as xg(t) ≤ τup, or ug(t) = −1 so long as xg(t) ≥ −τdown; here τup and τdown are
positive integers representing the minimum time the unit must remain on or off. Fig-
ure 2 shows the state transition diagram for such a unit, with τup = 3 and τdown = 2.
The constraints are represented by not allowing transitions between on and off states
unless the unit is in the appropriate state.

Remark 3 The three examples presented above illustrate the type of problems that
can be addressed by the class CCn. It is worth emphasizing, however, that problems
with convex and continuous objectives fall under a very general and broad class of
optimization problems, all of which admit efficient solution algorithms. Of interest
to this work are the class of problems known as monotropic programming covering a
wide variety of constrained optimization problems; see, for example, [46].

2.1.3 Discrete objective, n states (Dn)

Another important class of units are those that have in addition to discrete operating
states, discrete levels of power generation or consumption. Perhaps the simplest ex-
ample could be the lighting system in a vehicle; when a light is on it requires a fixed
amount of power based on its rating. An example of a generating unit with a similar
description could be a battery or super-capacitor that can only output power at a fixed
rate. In both examples, the abstract constraint set S g(t) (S l(t)) for the power variable
g(t) (y(t)) would contain discrete elements. Consequently, the decomposition of the
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Fig. 3 State transition diagram
for a rechargeable battery

cost and utility functions will not posses the convexity and continuity properties of
the previous classes of units.

Example 4 (Charging and discharging units) As an illustrative example, we con-
sider a unit that can behave as either a generating unit or a load depending on its
state. Rechargeable batteries and super-capacitors fall under this characterization.
Figure 3 shows the state transition diagram for a rechargeable battery that has four
discrete states corresponding to being discharged, at 1/3 charge, 2/3 charge, and
fully charged. Note that in this example the charge rate is different than the discharge
rate; it requires two time steps to charge the unit to the next state (the dashed line
in Fig. 3), whereas it is discharged in one time step (the solid black line in Fig. 3).
Furthermore, the unit is also able to ‘hold’ its charge, as indicated by the grey arrows
in Fig. 3. The dynamic description of this model must keep track of how long the
unit has been charging or discharging. Furthermore, we note that once the unit has
committed to charging, it will not be available to discharge (or hold) until it is at the
next charge state. The dynamics for a generalized version can be written as

x(t + 1) =

⎧
⎪⎨

⎪⎩

min(x(t) + u(t), Tc), if x(t)u(t) > 0

max(x(t) + rc
rd

u(t),0), if x(t)u(t) < 0

x(t), if u(t) = 0,

(2.13)

where at each time step, x(t) ∈ {rc,2rc,3rc, . . . , Tc}. Here, Tc (assumed to be an
integer) is the time required to charge the unit from a discharged state to the fully
charged state, rc is the charge rate, and rd is the discharge rate. Note that this de-
scription requires Tc to be an integer multiple of the charge rate rc . For the example
in Fig. 3, Tc = 6, rc = 2, and rd = 1. In this description, the state variable x(t) rep-
resents the partial charge level of the unit. Here, x(t) ∈ X = {0,1,2, . . . , Tc} and
u(t) ∈ U = {−1,0,1}. For n discrete charge states, x(t) = 0 corresponds to the fully
discharged state, x(t) = krc to k/n charge (for k = 1,2, . . . , n), and x(t) = Tc to the
fully charged state.

The state transition costs can in general take the same form as (2.11). For this
type of unit, the objective function must be considered as a generating cost while it
is discharging, and a utility when it is charging. In this way, the cost should be repre-
sented as C(g(t), xg(t), ug(t)) = P(g(t), xg(t), ug(t)) + Sg(xg(t), ug(t)); although
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the unit can be considered as a load, we use the notation of the generating unit with
the book keeping requirement that when u(t) = −1 the unit should be treated as a
load.

Another important observation relates to the precise form of the function
P(g(t), xg(t), ug(t)). In general, the utility function and cost function will be dif-
ferent, and the objective can be written as

P(g(t), xg(t), ug(t)) =

⎧
⎪⎨

⎪⎩

P g(g(t), xg(t)), u(t) = 1

P l(g(t), xg(t)), u(t) = −1

0, u(t) = 0.

(2.14)

We emphasize that as g(t) ∈ S g(t) is a discrete element, the functions P g(g(t), xg(t))

and P l(g(t), xg(t)) will be discontinuous and consequently non-convex.

An important abstraction here is the emphasis on a qualitative description of the
unit via the state transition diagram as opposed to a dynamic description, as in (2.13).
Note that the model derived in (2.13) is a switched non-linear system. It is not hard
to construct additional models that have relatively simple qualitative descriptions,
but highly complex mathematical models. We will show in the sequel that in most
instances a qualitative description is sufficient to solve the problem P .

Another class of units that also falls into this class include those that do not have
any explicit cost or utility function. For example, a battery might not have any explicit
cost for discharging; there is no fuel consumption or maintenance required. Similarly,
the utility of charging a battery might also be difficult to characterize. In this way
we are able to set P(g(t), xg(t), ug(t)) = 0, and the primary objective becomes the
scheduling of charging and discharging the battery.

2.1.4 Additional remarks

The above descriptions provide a powerful framework for dealing with a vari-
ety units. We also refer the reader to [47] for a detailed exposition of how these
methods can also be applied to units with non-linear objectives and constraints,
such as ramping constraints. It is worth emphasizing, therefore, that the benefit of
this modeling framework lies in its ability to handle nonlinear objectives with dis-
crete and state-dependent constraints in a scalable fashion. This becomes more im-
portant when discussing solution methods for these problems, provided in the se-
quel.

3 Solution methods

The primary objective is to solve P in a distributed manner. In the absence of the
coupling power balance constraint (2.7), problem P can be decomposed into sub-
problems involving only the cost and constraint for each individual unit. However,
by relaxing the coupling constraint into the objective, we arrive at a problem formu-
lation that lends itself to a straightforward decomposition. This approach is standard
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and is described in detail in, for example, [48]; we only provide a brief overview
here.

To begin, we introduce the Lagrange multiplier λ ∈ R
T and define the Lagrangian

function as

L(g,y,xg,xl ,ug,ul , λ) = J (g,y,xg,xl ,ug,ul )

+
T∑

t=1

λt

(
L∑

j=1

yj (t) −
G∑

i=1

gi(t)

)
. (3.1)

From the Lagrangian (3.1) we can define the dual function as

q(λ) = min
g,y,xg,xl ,ug,ul

L(g,y,xg,xl ,ug,ul , λ); (3.2)

the minimization problem (3.2) is subject to the constraints (2.3)–(2.6). The dual
function lends an economic interpretation to the original problem P . The multiplier
λ can be considered as a price per unit of power; when the power balance is positive
(i.e., there is more demand than available power), the deficit must be purchased at a
cost of λ, whereas if the power balance is negative, the excess can be sold off at a rate
of λ.

The most critical feature of the dual function (3.2) is it can be naturally decom-
posed into subproblems corresponding to each unit as,

qi(λ) = min
T∑

t=1

(
Ci(gi(t), x

g
i (t), u

g
i (t)) − λtgi(t)

)
(3.3)

qj (λ) = min
T∑

t=1

(
Uj (yj (t), x

l
j (t), u

l
j (t)) + λtyj (t)

)
. (3.4)

Thus, for a fixed value of λ, the problems (3.3) and (3.4) can be solved using an
appropriate solver.

Remark 4 The above formulation suggests that each unit has associated with it the
ability to perform computation. Without any loss of generality, we note that the sub-
problems can be solved at any designated “computation node.” This node may in
general solve more than one sub-problem; that is it is not a requirement that each
sub-problem is solved independently.

The dual function (3.2), in turn, is used to describe the dual optimization prob-
lem to (2.2), which we term D. Therefore, using the decompositions shown in (3.3)
and (3.4), we can express the dual problems for the generating units and loads as

max
λ

qi(λ), i ∈ G (3.5)

max
λ

qj (λ), j ∈ L. (3.6)
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It is a well-known result from optimization theory that the optimal value of the
primal problem P , which we denote as J ∗, constitutes an upper bound for the optimal
value of the dual problem D, denoted as q∗ [45]; that is q∗ ≤ J ∗. We will discuss a
solution method for solving the dual problem in the sequel, in addition to recovering
the primal solution. Before we delve into the solution methods, we first describe how
the dual subproblems, as in (3.3) and (3.4), leads to tractable solution methods for a
variety of unit definitions.

The solution method we use for solving the dual problem (3.5) relies on sub-
gradient methods [48]. The general procedure involves iteratively updating the La-
grange multiplier value λ in such a way as to maximize the dual function. At each
iteration and for a fixed value of λ, the subproblems (3.3) and (3.4) must be solved.
It is important to emphasize that while the majority of the algorithmic work occurs
in parallel via the solution of each subproblem, the sub-gradient methods requires a
coordination step to compute a sub-gradient and update the Lagrange multiplier.

First, we note that the t-th component of the sub-gradient of the dual function can
be expressed as

ν(λt ) =
(

L∑

j=1

yj (t) −
G∑

i=1

gi(t)

)
. (3.7)

The index t ranges over the entire time horizon, T . The sub-gradient, which provides
an ascent direction for the dual problem, is precisely the power balance excess or
deficit.

Using the sub-gradient we are able to compute an ascent direction for the Lagrange
multiplier. Introducing the index k to denote the iteration step, we can compute the
update as5

λk+1 = λk + αkν(λk). (3.8)

The parameter αk represents the step-size for the update at each iteration. The choice
of the step-size will have implications for both the absolute convergence properties of
the algorithm and the speed of convergence. The precise choice is highly dependent
on the particular application, and selection of this parameter should be approached
as a variable requiring iterative tuning. For this work, we consider a step size that is
non-summable and diminishing; that is for each iteration step k,

αk ≥ 0, lim
k→∞αk = 0, and

∞∑

k=1

αk = ∞.

The algorithm also requires a stopping criteria which will have implications for
the running speed as well as how “good” the solution is. There are some theoretical

5For an equality constraint, as in (2.7), the multiplier is unconstrained. If, however, the power balance
constraint was written as an inequality constraint, the multiplier update (3.8) would have to be projected
onto the positive orthant.
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justifications for choosing stopping conditions (and step-size rules) when an opti-
mal solution to the problem is known a priori [48]. However, in the absence of this
knowledge a more ad hoc stopping criteria must be used. For example, in systems
where the running time of the algorithm is critical, it may be advantageous to use a
fixed number of iterations. While this method may lead to less than desirable solu-
tions, feasibility can still be guaranteed. Another possibility is to use a thresholding
technique, whereas if ‖λk+1 − λk‖ < ε, the algorithm stops.

As a final remark, we emphasize that this algorithm provides only asymptotic
guarantees on convergence. In real implementations, use of a stopping criteria as sug-
gested above will lead to a sub-optimal solution. Furthermore, we note that the ability
to reconstruct the global optimum from this algorithm will greatly depend on the spe-
cific problem structure and the primal recovery step, that we discuss in Sect. 3.2.

3.1 Unit subproblems

As described above, at each iteration step of the sub-gradient algorithm, the sub-
problems (3.3) and (3.4) must be solved. The classification of units given in Sect. 2.1
will lead to insight on appropriate solution methods that we present here. It is im-
portant to emphasize that one advantage of this method is the flexibility inherited for
solving each subproblem. Indeed, as shown in the following, certain sub-problems
may admit specialized algorithms or even analytical solutions parameterized by the
dual variables. The appropriate choice of the solution method will depend on the par-
ticular problem instance, and we emphasize in this discussion the flexibility obtained
by considering a shortest-path formulation for many of the problem classes.

3.1.1 Convex and continuous objective, 1 state (CC1)

The sub-problem associated with this class must only consider the power generation
or demand level for each unit. The sub-problems (3.3) and (3.4) reduce to

qi(λ) = min
gi(t)∈S g

i (t)

T∑

t=1

(
Ci(gi(t)) − λtgi(t)

)
, ∀i ∈ G (3.9)

qj (λ) = min
yj (t)∈S l

j (t)

T∑

t=1

(
Uj (yj (t)) + λtyj (t)

)
, ∀j ∈ L. (3.10)

Recall that for this class of units, the objective functions Ci(gi(t)) and Uj (yj (t)) are
continuous and convex functions. Consequently, the sub-problems (3.9)–(3.10) are
also convex (concave) lending to efficient algorithms for finding their solutions. In the
most general form, these functions fall under the class of convex programming and
the specific form of the objectives will dictate the appropriate solution method (e.g.,
linear program or quadratic program). Furthermore, for certain classes of objective
functions analytic solutions can be computed a priori parameterized by the multiplier
value λ. In this way, the solution to these sub-problems can be efficiently computed
with minimal computational overhead.
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3.1.2 Convex and continuous objective, n states (CCn)

This class of units is the most closely related to units described in traditional ED
and UTC literature [22–26]. The combination of the scheduling problem with the
commitment level of each unit is most readily solved using techniques from dynamic
programming [49]. As in the case with the class CC1, the introduction of the term
−λtgi(t) and λtyj (t) does not cause the objective function to lose its convexity prop-
erties.

3.1.3 Discrete objective, n states (Dn)

Recall that the class Dn contains discrete decision variables with a discontinuous and
non-convex objective function description. This poses a computational challenge for
solving the sub-problems (3.3) and (3.4). Fortunately, the qualitative description of
the unit’s operation via the state-transition diagram leads to insight on how to solve
the sub-problems.

To illustrate the procedure, we return to the rechargeable battery example
of Sect. 2.1.3. We will assume that there is a constant operating cost when the super-
capacitor is charging, and there is a constant utility for when it is discharging. The
cost functions specified in (2.14) have the form

P g(g(t), xg(t)) = γd and P l(g(t), xg(t)) = γc. (3.11)

The key observation here is the discrete nature of the power variable g(t) can be
treated in the same way as the discrete state and decision variables. With such a
perspective, tools from dynamic programming can be used. More intuitive, however,
is the use of shortest path algorithms to solve the sub-problems [49]. Given the state-
transition graph of Fig. 3 we must simply assign costs to each edge and then use
an appropriate algorithm such as Dijkstra’s or the Bellman-Ford algorithm, to solve
the problem. What is important to note is the costs of certain edges will be time-
dependent. For example, assume the constraint set for the power variable g(t) is
S g = {−p,0,p} for all t ∈ T ; this corresponds to a constant charge and discharge
rate when the battery is in the appropriate state. The decision to transition from a
fully discharged state at time t to the next charge state (which is reached at time
t + 2), will incur a transition cost of Sg(0,1), obtain a utility of P l(−p,0) = γc , and
pay a “phantom” price of λtp. The dashed line edge from Fig. 3 from time t to t + 2
therefore gets assigned a cost of (Sg(0,1) − γc + λtp); note that the utility gained is
subtracted from the total edge cost, as we would like to minimize the objective.

The shortest path approach to solving these subproblems also lends itself to a
more transparent understanding of how the sub-gradient algorithm is working. At
each iteration, the values of the multipliers get updated in such a way to solve the
dual problem D. Consequently, the shortest path solution is expected to change at
each iteration as a result of the update equation (3.8), and this can be monitored to
understand the impact of each unit on the aggregate solution.

Finally, we must “condition” the state transition diagram to accommodate the
shortest path algorithm. A simple approach is to add a ‘Start’ node (labeled S) and a
‘Terminal’ node (labeled T) to the graph, as shown in Fig. 4. Edges connecting these
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Fig. 4 Shortest path graph for a rechargeable battery

augmented nodes can be used to specify initial and terminal operating states. For ex-
ample, if the initial state is fully charged, then there should only be one edge leaving
the start node and connecting to the state corresponding to being fully charged. Sim-
ilarly, if initial and final state conditions are to be determined via optimization, all
edges can be included, possibly assigning additional costs reflecting those decisions.

As discussed in (3.3), the class Dn can also include units with no explicit cost or
utility function associated with them. For example, in the supercapacitor example, we
might have γd = γc = 0. Note that this change does not affect the general procedure,
and we note that the Lagrange multiplier still introduces a “phantom” price for the
consumption or production of power at a specified level. This most clearly illustrates
the hidden costs of, for example, charging or discharging a battery or supercapacitor.
While no explicit cost is provided, there is an implicit cost incurred by the rest of the
power system in order to meet the state requirement of the unit.

3.2 Primal recovery

An important final step in the sub-gradient algorithm described above is the recovery
of the primal solution to the problem P from the solution of the dual problem D.
Indeed, for special classes of optimization problems, such as those that are strictly
convex, the recovery of the primal solution from the dual is a straight-forward proce-
dure. In such cases, a convex combination of primal variables from the subproblems
are used to generate the primal solution [48]. For example, consider a scenario where
all generating units and loads are of the class CC1. At each iteration step in the sub-
gradient algorithm, the sub-problems (3.3) and (3.4) must be solved. It can be shown
that in the limit, the primal solution can be obtained from a convex combination of
the solution of from each iteration in the algorithm. To better illustrate this point, con-
sider a generating unit with optimal commitment level g∗(t), and denote the optimal
solution of the k-th iteration in the sub-gradient algorithm as gk∗(t). Then the primal
solution can be expressed as [48]

g∗(t) = lim
k→∞

∑k
r=1 αrgr∗(t)
∑k

r=1 αr
. (3.12)
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Note that when the variables are continuous, that is when the constraint sets S g(t) or
S l(t) represent continuous intervals or box constraints, then the convex combination
will be guaranteed to be feasible [45].

However, in the general set-up developed here, we do not have such properties.
Clearly, the method used in (3.12) can not work when the primal variables are dis-
crete; a convex combination of discrete points will not in general correspond to a
feasible solution. In fact, even for linear programming examples, customized solu-
tion methods must be employed for primal recovery, such as bundle methods [50].
Furthermore, existing literature on primal recovery techniques for mixed integer non-
linear programs is scarce. As a result, we propose a heuristic method for recovering
a feasible primal solution from the dual problem. Note that with this heuristic we are
no longer able to make guarantees about the optimality of these solution, but rather
emphasize that feasibility is ensured.

The first important observation is that each subproblem guarantees that the solu-
tions will be feasible in the absence of the power balance constraint (2.7). The main
challenge for primal recovery, therefore, is that the power balance (2.7) is satisfied.
In this direction, we propose to use a combination of the primal recovery technique
shown in (3.12) with a load and source shedding heuristic.

As the classification of units suggest, the problem P will contain a combination
of both continuous and discrete variables representing the power generation and con-
sumption of units, along with a set of discrete variables representing the state and
control variables for each unit. The primal recovery heuristic is described below. We
denote by k∗ the last iteration count of the algorithm.

Algorithm 1 Primal Recovery Heuristic
1. For each unit belonging to the class CC1 and CCn, construct the primal power

level variables gi(t) and yj (t) using (3.12). The state and control variables for
these units will be taken from the solution of the sub-problems (3.3) and (3.4) at
the last iteration step k∗.

2. For each unit belonging to the class Dn, use the solution for the power level vari-
able and the state and control variables from the last iteration step; that is the
values gi(t), x

g
i (t), u

g
i (t), yj (t), xl

j (t), and ul
j (t) at iteration k∗.

3. Check the power balance constraint (2.7).
4. If the power balance is satisfied, use that solution. Otherwise, begin shedding loads

or increasing power generation according to a predetermined priority list.

The last step in the procedure deserves some elucidation. One approach is to de-
cide if the primal recovery should operate as a utility maximization priority, gener-
ation cost priority, or aggregate cost priority (e.g., via the introduction of and ap-
propriate choice of a weighting constant κ , discussed in Remark 1). For example, if
load utility has a greater overall importance to the operation of the power system,
then when the power balance is not met, generation of power should be increased
when available. Similarly, if the generation cost is higher priority, than loads should
be shed or their demand level lowered when possible. In either situation, we find that
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this procedure now relates to techniques related to load shedding heuristics and pri-
ority assignments [36, 37, 39–44]. We would like to note that in our experience, the
power balance constraint is satisfied without the need for any additional shedding.

4 Simulation example: an off-grid solar powered community

As illustrated in Fig. 5, we provide here an example of an off-grid community includ-
ing three smart homes equipped with multiple power generation sources and schedu-
lable electric appliances to demonstrate how this algorithm can efficiently schedule
their operations. The primary power sources used in this example are three sets of
solar panels for medium sized homes with an array size of 3.5 kW and approximate
solar isolation of 5 hours during spring time for each set [51]. Considering the differ-

Fig. 5 An off-grid solar powered community of smart homes
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Fig. 6 Maximum solar power
during one day

ence of the isolation strength during one day, we allocate the maximum power output
from 8 a.m. to 24 p.m. for one set of solar source in Fig. 6. The power generation
cost is due to the capital investment of solar panels and maintenance fees. The solar
system in [51] for a medium sized home has a list price of $11,700, with an expected
monthly output of 529 kWh in California area, and free life-time maintenance. Con-
sidering the 30% federal tax return and $1000–$2000 state rebate, the solar system
with 30 year usage has electricity cost around $0.04 per kWh. The community is also
equipped with two sets of battery banks capable of supplying a maximum of 6 kW
power for 6 continuous hours. Considering the battery life cycle of 3300 and invest-
ment fee of $2870 for one set, we assign the cost for power provided from the battery
at $0.08 per kWh if the battery set is 60% charged for each cycle on average. The
battery sets are assumed to be half charged at the beginning time in this simulation
example. This unit falls under the class Dn. Under some emergency situations, e.g.,
continuous rainy days, a backup generator is necessary. Here, the backup generator
is a small size diesel generator with fixed 8 kW power output which can only be sup-
plied for 30 minutes before refueling. During the refueling state, the diesel generator
must be switched to an ‘off’ state for another 30 minutes before it can be available
again; this is modeled after Example 3 describing units with a minimum up and down
time constraint. Considering the current market price of diesel at $4 per gallon, the
electricity cost from the backup generator has a much higher cost at $0.50 per kWh.

In this example, we demonstrate how appropriate modeling of the load utility func-
tions and constraints are equivalent to assigning a priority for each load. The advan-
tage for using a modeling framework is that the notion of priority is now captured via
the optimization, rather than through a heuristic. In this direction, we model the disu-
tility6 of each load as an non-decreasing function of the time the load is not ‘on.’ That
is, if a load is turned ‘off’ in order to satisfy the power balance, the corresponding
disutility will increase. For all of the appliances included in this example, we assume
the disutility is constant over fixed intervals, and the accumulative disutility value
increases as the time in the ‘off’ state is longer; this is modeled after Example 2 de-
scribing units with up and down time accumulation costs. Each load, therefore, will

6Note that for the remainder of this example we refer to ‘disutility’ as opposed to ‘utility.’ This is without
loss of generality and translates only to a sign change for the load segment of (2.1).
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be modeled under the class Dn. The constraints for each load are also modeled as
equality constraints; when a load is in the ‘on’ state it will demand a fixed level of
power, and when it is ‘off’ it requires no power. The power demand constraint and
disutility values of the all load units from three homes are listed in Table 1, where P

denotes the power demand from each load referring to the example of [10], c repre-
sents the disutility cost for being in the ‘off’ state during the fixed interval, t0 is the
operation request starting time and 	t is the requested duration time. The subscript
1, 2 and 3 indicates the index of the home. The disutility cost is assigned according
to the priority of the appliances in the daily life. Some units, i.e., the refrigerator and
lighting system, will bring more inconvenience if purposely paused during a request
time. For these units, we assign a higher disutility cost than the others to guarantee
their normal operation provided there is enough power available. Other units, i.e., the
dish washer, which is not urgent to be scheduled right upon request, is assigned lower
disutility cost.

From the scenario description in Table 1, the overall daily energy demand request
from the small community is 61.73 kWh which is near the solar daily output capabil-
ity of 52.5 kWh. Considering that some appliances, i.e., the washing machine and spin
drier, may not be used everyday, the proposed generation system of a photovoltaic ar-
ray, battery, and backup generator can generally meet the demand requirements of
this community with three medium sized homes. However, during certain peak re-
quest periods, i.e., in the mornings and evenings, conflicts can arise when there are
more load requests than available power; there will not be enough generating capa-
bility from the solar source alone to supply the loads, especially when the maximum
solar power output is small due to isolation strength during those time intervals. It is
expected that the energy management system can efficiently schedule the operation
to alleviate the demands during peak period and at the same time avoid shutting down
any unit too long leading to increased disutility.

For this example we also implement a ‘receding horizon’ type of approach to
simulate the user-driven nature of the loads. We consider a moving time horizon for
the optimizer from the current request time to the end of the day (24 p.m.) with
each time step corresponding to 30 minute intervals. At the initial time, the algorithm
determines the optimal schedule and allocation for each source and load. Here we
point out that the optimizer can not anticipate that, for example, the dish washer from
home 1 will turn on at 9 a.m. As a result, the optimizer uses the current request
level for each load and assumes it will be active until the end of its duration time.
When a new load request is initiated, the optimizer must recompute the schedule and
allocation for all units using the new state of the system. Otherwise, the generated
optimal schedule will not change until the end of the day.

The Lagrange multipliers in the sub-gradient algorithm is initialized to zero and
we use αk(t) = 0.1√

k |ν(λk)| for the step-size αk in (3.8) to ensure the speed of conver-

gence is in a controlled scope. The optimal schedule for this scenario is illustrated in
Fig. 7 and Table 2 for the source’s power outputs and load’s operation histories, i.e.,
starting time ts, ending time te and delayed time td, respectively.

From Fig. 7, we observe that solar sources, as the cheapest power supply unit in
this system, will provide as much power as required by the loads if the request is un-
der its maximum power output limit. When the request is above solar source’s upper
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Fig. 7 Sources schedule and commitment levels

Table 2 Optimal schedule of loads operation

Unit name ts1 (h) te1 (h) td1 (h) ts2 (h) te2 (h) td2 (h) ts3 (h) te3 (h) td3 (h)

Cooker hob 8 8.5 0 8.5 9 0.5 9 9.5 0.5

Microwave 8 8.5 0 n/a n/a n/a n/a n/a n/a

Dish washer 10.5 11.5 1.5 10.5 11.5 1 11 12 0

Clothes washer 9.5 11 0.5 n/a n/a n/a 9.5 10.5 1.5

Vacuum robot 10 10.5 1 13 14 0 11 11.5 3

Spin dryer 14 15 0 n/a n/a n/a 12 13 0

Cooker oven 18 18.5 0 17.5 18 0 18 18.5 0

Lighting 18 24 0 18 24 0 18 24 0

Desktop 18 20 0 n/a n/a n/a n/a n/a n/a

Jacuzzi pump 19 20 0 20 21 1 n/a n/a n/a

Laptop 20 23 0 n/a n/a n/a n/a n/a n/a

Refrigerator 8 24 0 8 24 0 8 24 0

bound, the battery, as the second cheapest supply unit, will begin to output power or
some units are temporarily shut down until more power is available. For example,
during the morning hours 8 a.m. to 10 a.m., when the solar source maximum power
output is low, the battery will supply the extra power required for some important
appliances, e.g. the cooker hob. However, when the solar power output is increased
during noon and afternoon, the battery stores the extra generated energy after con-
sumption. At the 18 p.m. mark, the aggregate requested power from the loads exceed
the battery supply limit, initiating the backup generator to supply power. However,
since the backup generator can only supply power for 30 minute intervals, the opti-
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Fig. 8 Aggregate demand
levels and delivered power.
Black colored bars indicate
intervals when the load request
could not be met and
appropriate scheduling of the
sources and loads are required

mizer must schedule the demand level of the loads to accommodate for the switching
level of available power. From the load operation history of Table 2, at the beginning,
appliances having low disutility cost are shut down temporarily to let the more impor-
tant appliances operate first with power supply coming from the solar source and the
battery, which avoids using the backup generator allowing both of them to operate
simultaneously. This behavior is due to the net benefit considered by both the cost
of running the backup generator and the utility lost for turning off some appliances
temporarily. The clothes washer, vacuum robot and dish washer, with lower assigned
disutility values, are purposely shut down until the solar power output level meets
their requests. The Jacuzzi Pump request from home 2 at 19 p.m. is paused for 1 hour
to avoid using the backup generator again.

In order to better illustrate the mediation function of the optimal algorithm among
all the units in the system, Fig. 8 shows how the aggregate available power is reduced
during peak load request time periods. In this plot, the grey bar is the power sup-
ply and the black bar is the power request. When power supply can meet the power
request, the grey bar will cover the black bar. Otherwise, the grey bar is less than
the black bar. Although the calculation time highly depends on the complexity of
the shortest path models, the number of units, and the time horizon of the planning
window, in this example with the prescribed scenario and parameters, the calculation
time of every new schedule running in Matlab is estimated to be less than 3 seconds
when all of the units shortest path solution are solved in sequence using a Lenovo
X201 laptop with intel i5 CPU and 4GB RAM. Therefore, if the shortest path so-
lution for all the units are calculated parallel, we can expect to obtain the optimal
solution for each time interval in less than 1 second.

The performance of our algorithm is also compared with a direct scheme which
has no schedule and will supply the requested power right at the proposed time in
Fig. 9; this solution will use the back-up generator regardless of cost. With the optimal
schedule, the overall cost is greatly reduced from $12.86 to $8.42. With the optimal
schedule, it will save approximate $133.2 in one month and $1598.4 in one year,
which is not a trivial amount.
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Fig. 9 Cumulative cost history
comparing sub-gradient
algorithm and a direct scheme
without optimal schedule

5 Concluding remarks

This work described an optimization framework for an energy management system
of an off-grid power system. The distinguishing feature of this work is the inclusion
of load scheduling and utility maximization in the context of a self-contained power
system. This work also described how qualitative descriptions of a wide class of
generating units and loads can be used to derive alternative representations that lead
to tractable solution methods via the shortest path algorithm.

The advent of “smart” power systems of all scales must lead to new perspec-
tives on the role of loads in these systems. While load shedding and other heuristic
techniques offer simple and fast methods for guaranteeing the power balance of the
system, they are lacking from the perspective of optimizing the operation of the entire
power system. Self contained off-grid power systems should approach power man-
agement with a more holistic approach to ensure the optimal and efficient operation
in terms of both costs and utilities. As the methods for off-grids systems mature, they
can also be applied to microgrid and smart-grid architectures, which is the subject of
future work.
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